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Orbital angular momentum (OAM) has demonstrated great success in the optical communication field,
which theoretically allows an infinite increase of the transmitted capacity. The resolution of a receiver to
precisely recognize OAMmodes is crucial to expand the communication capacity. Here, we propose a deep
learning (DL) method to precisely recognize OAM modes with fractional topological charges. The
minimum interval recognized between adjacent modes decreases to 0.01, which as far as we know is the
first time this superhigh resolution has been realized. To exhibit its efficiency in the optical communication
process, we transfer an Einstein portrait by a superhigh-resolution OAM multiplexing system. As the
convolutional neuron networks can be trained by data up to an infinitely large volume in theory, this work
exhibits a huge potential of generalized suitability for next generation DL based ultrafine OAM optical
communication, which might even be applied to microwave, millimeter wave, and terahertz OAM
communication systems.
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Vortex beams carrying orbital angular momentum
(OAM) have been extensively investigated in optical
manipulation [1], imaging [2], interaction between light
and matter [3,4], and optical communication [5] since it
was recognized in 1992 [6]. The helical wave front of such
a vortex beam is described by a phase factor expðilϕÞ,
where ϕ is the azimuthal angle and the topological charge l
is an unlimited integer or fractional value. Owing to the
unbounded dimensional space, it provides high degrees of
freedom for multiplexing information, which infinitely
boosts the transmitted capacity in optical communication
processes [7,8].
Because of its significant application, the generation of

OAM states has aroused tremendous enthusiasm ranging
from spiral phase plate [9], q plate [10,11], and metasurface
[12] to integrated devices [13]. One of the most accom-
plished types of technology is to use spatial light modulator
(SLM) uploading spiral holograms [14], which can simply
create vortex beams and flexibly manipulate the phase
information of light. Besides, the recognizable ability of
the receiver is also crucial for both OAM shift keying
(OAM-SK) [15] and OAM division multiplexing (OAM-
DM) [16] in terms of OAM-based optical communication.
Therefore, much work has been conducted focusing on
efficiently developing an OAM sorter recently. Some
techniques utilize traditional optics theories that transform
the azimuthal position into transverse position [17] based
on interferometers [18–20] and vortex diffractive gratings
[21]. One currently efficient sorting method is to implement
coordinate transformation that separates states with differ-
ent topological charges by a distinct focal spot on the detect

plane [22,23]. And a computational method to measure the
transmission matrix (TM) provides an anti-interference
approach to retrieve the propagation of vortex beams
[24]. In addition, the OAM-to-polarization coupling effect
is also proposed to sort different OAM states of light [25].
All those methods pave the way for effective OAM-based
optical communication.
However, owing to the limitation of the resolution, only

eigenmodes where topological charges are integers are
considered in all methods mentioned above. With the
increase of an integer topological charge value, the growing
phase singularity and the diffraction effect enormously
affects the intensity distributions of vortex beams, which
extremely adds the difficulties of being focused in free-
space and being coupled in fibers. This problem limits the
development of the OAM-based optical communication.
Consequently, it is of fundamental importance to expand
communication capacity adequately with more OAM states
but smaller phase singularity.
Our goal here is to develop a superhigh-resolution

technique to precisely separate modes into subdivisible
space between adjacent eigenmodes. That is, the minimum
interval Δl among recognized modes is a fractional value
and can be as small as possible. The pioneering techniques
of generating fractional OAM modes were proposed in
2004 [26,27]. However, the tiny variety of fractional OAM
modes is further complicated to be discriminated compared
to that of integer changes [28–30]. Recently, the deep
learning (DL) method has been developed to possess the
ability of extracting intrinsic features and dividing decision
boundary according to data [31]. The original assignment

PHYSICAL REVIEW LETTERS 123, 183902 (2019)
Editors' Suggestion

0031-9007=19=123(18)=183902(6) 183902-1 © 2019 American Physical Society

https://orcid.org/0000-0002-7574-2047
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.183902&domain=pdf&date_stamp=2019-10-29
https://doi.org/10.1103/PhysRevLett.123.183902
https://doi.org/10.1103/PhysRevLett.123.183902
https://doi.org/10.1103/PhysRevLett.123.183902
https://doi.org/10.1103/PhysRevLett.123.183902


for DL is to optimize a classification problem that is
consistent with our task, which has gained great achieve-
ments [32–34]. Moreover, this end-to-end framework
efficiently simplifies the optical system with simultaneous
low-power loss. In recent literature, the combination of DL
and optics has been rapidly growing [35]. Reconstructing
images through scattering media [36–38] with highly
scalable DL approaches have been demonstrated in experi-
ments to exhibit steady transmission processes in optical
configuration.
In this Letter, we perform an OAM-recognition neuron

network (ORNN) with DL to enormously improve the
OAM recognizable resolution. The ORNN is first designed
to exactly extract features of different fractional vortex
beams and then acquire the decision boundary for dis-
crimination. To evaluate its generalized performance, we
then simulate an optical parallel communication system to
transmit data by encoded OAM superstates in which each
mode is regarded as one bit. Because of the slight difference
among encoded bits and the high recognizable accuracy,
one superstate can theoretically carry infinite amounts of
data. The experimental <0.02% bit error ratio (BER)
verifies the feasibility of expanding communication capac-
ity in this approach.
The phase recognition assignment can be simply com-

prehended because of the end-to-end characteristic.
According to Fraunhofer diffraction, the complex field
Uðx; yÞ carrying phase information from the diffractive
object to the imaging plane can be described by

Uoutðx;yÞ¼
expðikzÞ

iλz
exp

�
ik
2z

ðx2þy2Þ
�

×
ZZ
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�
−
i2π
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where k is the wave number, z is the distance between the
object and imaging plane, λ is the wavelength, and Ĥ is the
forward operator of the above optical process. After the
propagation described by Eq. (1), the measured intensity of
the vortex mode is derived as

Iout ¼ jUoutj2 ¼ jĤUinj2: ð2Þ

Iout can be recorded by camera as the form of an intensity
matrix in which each element is related to the phase
information of Uin. Then Iout is inputted into ORNN to
predict an estimate of the topological charge value
p ¼ F̂Iout, where the operator F̂ represents the calculation
process of ORNN. The prediction is obtained by successive
extracting the features of Iout. And the optimization target is
to iteratively minimize the objective function that can be
described by the form of

min
θ
Jðl; pÞ þ αF̂ðθÞ: ð3Þ

Here, Jðl; pÞ is designed to compare the true topological
charge value lwith the prediction p, and θ is the collection
of all weight parameters in ORNN (see in Supplemental
Material Note 1 [39]). θ will be updated to make p equal to
l when the training process is convergent. The second term
containing α is to regularize what was acknowledged prior
by restraining the influence from θ on the optimization.
The experimental setup is shown in Fig. 1. The linear

polarized light is delivered from a continuous wave (cw)
laser source (532 nm wavelength; 1.2 mm waist;
<1.5 mrad divergence) with power of 4.7 mW. A half-
wave plate (HWP) and a Glan-Taylor (GT) prism are used
to control the polarization and the intensity of light. Then
lens L1 (30 mm) and L2 (200 mm) form a telescope for
expanding the light to illuminate the SLM. The SLM in our
experiment has a resolution of 1920 × 1080 pixels, each
with a square area of 8 × 8 μm2. Phase holograms are
uploaded on SLM to generate fractional OAM states. After
being reflected by SLM, the wave front has been trans-
formed to Uin ∼ exp ðilϕÞ; here l is a fractional value.
Limited by the resolution of our SLM, Δl ¼ 0.01 almost
reaches the smallest variation that can be displayed
between adjacent OAM states. So it is regarded as the
minimum separation to be recognized in our optimization
problem. The modulated light is propagated through L3

(50 mm) and then is recorded by a CMOS camera which
has 2448 × 2048 pixels with size of 3.45 × 3.45 μm2.
The recorded intensity distributions Iout cover the phase
information of the fractional vortex beams (Uin) according
to Eqs. (1) and (2). Finally, Iout is down sampled to
224 × 224 pixels to be inputted into ORNN.
The architecture of ORNN is shown in Fig. 2. Its details

are provided in the Supplemental Material, Note 2 [39].
Our classification task requires the highly precise recog-
nition of a fractional topological charge interval between
adjacent OAMmodes. Nevertheless, the difference of Iout is
too small to be distinguished. The used average pooling
layer [34] causes the tiny difference to be even less obvious.

FIG. 1. Experimental setup (see the text for more details).
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Therefore, we select the max pooling layer [32] for down
sampling to magnify the weak variance when topological
charge changes. The objective function to be optimized in
Eq. (3) is defined by

Jðl;pÞ ¼ −
1

m

�Xm
i¼1

Xn
j¼1

1flðiÞ ¼ kjg log
�

expðpjÞP
n
t¼1 expðptÞ

��
;

ð4Þ

where m is the total number of the recorded dataset, lðiÞ is
the label of the ith intensity distribution Iout, and the set
fk0; k1;…; kng represents the topological charge value
used in our experiments. The expression 1flðiÞ ¼ kjg
means it will take value 1 when condition flðiÞ ¼ kjg is
satisfied and 0 for the opposite case.
For adequately exploiting the bandwidth resources of the

OAM modes, we first perform the ORNN to distinguish
OAMmodes with fractional intervals of topological charge.
To prepare adequate data for training, one OAM mode is
augmented with different initial phases, which can mean-
while improve the rotary robustness of ORNN. The initial
phase of each mode in this experiment is changed from 0 to
1.98π withΔϕ ¼ 0.02π. Besides, considering the computa-
tional capability and the visualized presentation, we select
the OAM modes from l ¼ 1.00 to l ¼ 1.99 with Δl ¼
0.01 as the state interval to be discriminated. Totally, the
full dataset contains 10 000 OAM modes labeled by 100
different topological charges. In addition, 10% of each
value is randomly sampled in the test dataset that never
participates in the training process. The weight parameters
θ in ORNN are trained using a stochastic gradient descent
(SGD) optimizer with batch size 16 for 100 epochs. The
initial learning rate is set to be 0.001, and is lowered by 10
times at epoch 80 and epoch 90. A L2 regularization is
placed in the fully connected layer with weight decay of
0.01 to prevent overfitting as the role of α in Eq. (3) [36].
After training, the test OAM modes are inputted into

ORNN for evaluating the classification performance.
Figure 3(a) shows four pairs of the gray scale phase

hologram and the corresponding intensity distributions
of the OAM mode with 0.01 state interval. The annotation
demonstrates good agreement between actual topological
charges and predictions, indicating that the invisible differ-
ence between adjacent modes is seized easily by the trained
ORNN. This is because the convolution operation and the
max pooling operation continuously extract and magnify
the tiny variation in the 224 × 224 matrix, even though the
most part on Iout of the fractional vortex beams looks
similar. In Fig. 3(b), the same OAM mode with a different
initial phase results in the same prediction from ORNN,
which shows the ability of extracting the general feature of
the vortex beams. To show an example of the detailed
classification performance, a confused matrix [35] from
l ¼ 1.25 to l ¼ 1.34 is reported, as shown in Fig. 4(a).
Almost all tested OAM modes are recognized correctly
with only one wrong prediction lying in the adjacent OAM
state, demonstrating that the small separation in this
experiment can also be segmented clearly. Another quan-
titative analysis of ORNN is shown in Fig. 4(b). 98%
accuracy is finally achieved by using the max pooling layer
to down sampling. The improvement at epoch 80 is
attributed to the lowered learning rate. In addition, the

FIG. 2. Sketch map of the ORNN architecture to recognize
OAMmodes. The boxes indicate the number and size of extracted
feature maps from hidden layers, which are not tangible objects.
A 7 × 7 convolution layer with 2 strides (Conv); max pooling
layer with 2 strides (MP); dense block (DB); transition layer,
containing a max pooling layer behind 1 × 1 convolution (TL);
Global max pooling layer (GMP); fully connected layer (FC).

(a)

(b)

FIG. 3. The recognized OAM modes with fractional topologi-
cal charge. (a) Adjacent modes with 0.01 steps that can be
distinguished exactly. First row: Phase pictures uploaded on the
SLM. Second row: The intensity distributions of vortex modes
recorded by the CMOS camera. (b) Arranged same as (a), except
it shows the same OAM modes with different initial phase.
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accuracy curve using the average pooling layer is also
presented for comparison. The wide fluctuation and low
accuracy in this configuration behave worse for extracting
the characteristics in this task. This classification perfor-
mance can be further improved by deepening DNN
architecture or expanding the dataset to become more
numerous and more diversified. Notably, the unique
OAM modes in the whole dataset mean that every test
mode has not been seen by ORNN before, but it still
recognizes the unseen initial phase at a high performance
which confirms the rotary robustness for different OAM
modes.
To further demonstrate the availability of our method in

exploiting fractional OAM modes, we experimentally
implement a superhigh-resolution OAM multiplexing sys-
tem. Same as the experimental setup discussed above, the
system simulates a 2 m free-space communication envi-
ronment, which is based on fractional OAM superstates

with adjacent interval Δl ¼ 0.01. We encode an 8-bit
binary byte using 8 different OAM modes, the topological
charge of which is chosen from l ¼ 1.93 to l ¼ 2.00. Each
bit value is assigned to be 1 or 0 on the basis of whether the
corresponding mode exists or not. Specifically, the multi-
plexed superstate is generated by lmul ¼

P
8
i ðli=NÞ,

where N is the number of “1” in this 8-bit data as shown
in Fig. 5(a). We record the 28 ¼ 256 multiplexed super-
states for 50 loops and, in total, 256 × 50 ¼ 12 800 data are
fabricated. After training, perfectly quantified 100% test
accuracy is achieved without any manual intervention. As
Fig. 5(a) shows, an 8-bit code only occupies a small region
on Iout of the superstate, which indicates that large capacity
can continuously be used to encode. Moreover, the vortex
beam still remains at normal intensity distributions even if
we are multiplexing more modes in our method. Then, we
transfer an image using above a completed free-space
system to further verify its performance. A gray scale
image of an Einstein portrait with 110 × 100 pixels shown
in the left of Fig. 5(b) is chosen in our experiment. Each
pixel value is related to a 0–255 integer represented by an
8-bit superstate to be transmitted through the superhigh-
resolution OAM multiplexing system. The 11 000 sequen-
tial codes are sent to ORNN to predict every pixel value
with <0.02% BER as Fig. 5(b) shows.
Especially in considering fiber propagation, various

forms of environmental disturbance drastically aggravate
the distortion of signal. In fact, the instability of our laser

(a)

(b)

FIG. 4. Quantitative analysis of ORNN. (a) Confusion matrix
from l ¼ 1.25 to l ¼ 1.34. (b) The accuracy curves of using the
max pooling layer and average pooling layer.

(a)

(b)

FIG. 5. (a) An 8-bit OAM superstate multiplexed demonstra-
tion encoded by fractional modes. (b) Detailed process of
transmitting an Einstein portrait utilizing the superhigh-resolution
OAM multiplexing system.

PHYSICAL REVIEW LETTERS 123, 183902 (2019)

183902-4



source and optical system results in that the same OAM
mode sampled at different times has different Iout, which
simulates the mentioned distortion to some extent. For
solving this problem, we extend the time interval while
recording data to cover the disturbance. The high perfor-
mance in Fig. 5(b) shows the ORNN can extract the
intrinsic features with neglecting disturbances in our
system, which expresses tremendous possibilities for cov-
ering the influence of propagating in fiber. Moreover, the
turbulent atmosphere in free space transition of long
distance can also be implemented, combining with the
common used phase compensation method of adaptive
optics.
The method proposed here shows its powerful ability

to distinguish ultrafine OAM modes that traditional
approaches cannot realize. Indeed, the low frame rate of
the camera (35 fps at full resolution) and SLM (75 Hz) are
the main limitations for the rate of transference comparing
to accomplished OAM-DM technology [7,8,16]. However,
the capacity of communication in our encoded method can
be further increased by combining wavelength-division
multiplexing (WDM) and polarization multiplexing (PM).
And the transmitting rate can also be further improved by
the higher frame rate of the device. In addition, due to the
high performance of recognizing fractional modes, the
ORNN possesses the enormous potential for multiplexing
as many modes with 0.01 intervals as possible, which
unlimitedly expands the communication capacity in theory.
More importantly, challenges that existed in previous
integer-topological-charge OAM-based optical communi-
cation, such as beam divergence, aperture size, and mis-
alignment of transmitter and receiver, can be solved
by using the fractional topological charge ORNN proposed
here.
In conclusion, we realize superhigh-resolution recogni-

tion of OAM by ORNN. Such an end-to-end method has
been demonstrated to be robust and generalized for a
complicated classification task. In our experiment, different
OAM modes with 0.01 intervals can be precisely distin-
guished, and the same topological charge mode with a
different initial phase can also be recognized by its
corresponding topological charge. Then, we apply the
ORNN to develop an expansive multiplexing technique,
and evaluate it using 8-bit fractional superstates. The
<0.02% BER shows this intelligent recognition concept
offers new opportunities for next generation DL-based
ultrafine OAM optical communication. In principle, such
a method as proposed here might even be applied to
microwave, millimeter wave, and terahertz OAM commu-
nication fields.
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